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Rigorous Analysis and Network Modeling of
~ the Inset Dielectric Guide

T. ROZZI, SENIOR MEMBER, IEEE, AND STEPHEN J. HEDGES

Abstract —The inset dielectric guide (IDG) is an easy-to-fabricate alter-
native to image line and is also less semsitive to loss by radiation at
discontinuities. This paper presents a rigorous variational analysis in space
domain based on field and network considerations (transverse resonance
diffraction). This approach yields an accurate transverse equivalent net-
work for the fundamental mode suitable for evaluation by a desktop
calculator. Theoretical and experimental results are in excellent agree-
ment.

I. INTRODUCTION

ONSIDERABLE EFFORT has been spent on the
Cdevelopment of transmission media suitable for mi-
crowave and millimeter-wave communications, obvious ex-
amples being finline and image line. At high frequencies,
as circuit dimensions and tolerances become smaller, the
cost of such circuits rises. High circuit costs may in fact
become the limiting factor to the every-increasing commer-
cial development in millimeter-wave technology. Thus, the
ease of manufacture and capability for mass production
are becoming as important as the circuit performance of
such media.

Image line is a recogrized low-loss transmission media,
but its main disadvantage besides manufacturing difficul-
ties is its radiation loss from all practical components. In
order to confine the field more to the structure, trapped
image guide has been proposed [1], but this is even harder
to make, especially for small guide dimensions. In order to
overcome such manufacturing difficulties, inset dielectric
guide (IDG), shown in cross section in Fig, 1, has been
proposed as a low-cost alternative [2]. IDG, which is just a
rectangular groove filled with dielectric, has many of the
advantages of the trapped image guide without its fabrica-
tion problems.

With the high cost of circuit manufacture, the design of
circuits using trial and error is prohibitive; to be viable, the
transmission media must be accurately characterized to
enable circuits to be built that work the first time. )

The IDG structure has been analyzed previously, by
Zhou and Itoh [3], as an intermediate structure in the
analysis of trapped image guide. This analysis used the
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Fig. 1. The cross-sectional structure of inset dielectric wavegunide show-

ing the coordinate system used in the analysis.

effective dielectric constant (EDC) method and it gave
useful approximate results for the fundamental mode. The
singularity imposed on the field by the 90° metal edges,
however, causes diffraction, which is important for the
accurate evaluation of the modal cutoffs, field distribu-
tions, and transmission losses. We will consider here a
general solution to the IDG, which yields an accurate
equivalent circuit for the fundamental mode.

In recent years, the spectral-domain approach developed
by Itoh [4] has been preferred over the space-domain
approach for the numerical solution of boundary value
problems. In both approaches, the fields are derived from
potential functions, which, along with the necessary
boundary conditions, can be formulated into sets of in-
tegral equations that can be solved for the propagation
constant.

In the space-domain approach, these integrals are solved
directly by -Galerkin’s method, the unknown functions
being expanded by a suitable set of basis functions. In the
spectral-domain approach, the integral equations are trans-
formed into the Fourier domain prior to solution by
Galerkin’s method. The advantage of the latter method is
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that the integral equation is often easier to formulate, the
Green’s functions often being found by inspection. How-
ever, the choice of expansion sets required for solution in
the Fourier domain is restricted by the requirement that
they have simple Fourier transforms. Thus, functions that
do not accurately model the edge conditions are sometimes
used, which results in a slow convergence rate.

The approach outlined in this paper is a space-domain
approach. Unlike the spectral-domain approach, there is
no restriction on the choice of expansion functions. In fact,
the functions used are particularly accurate in that they
take into account the singularity imposed on the guide
field by the 90° metal edges. The problem is formulated so
that only one set of basis functions is required, which
results in a further increase in accuracy. As a result, the
convergence is very rapid, and often only the first term of
the expansion set is sufficient.

II. TRANSVERSE RESONANCE DIFFRACTION

The coordinate system used in this analysis is shown,
along with the guide structure, in Fig. 1. For each homoge-
neous region, we may write

eky=k2+k,+p* (1)

where B is the z-directed propagation constant to be
determined. For such a composite structure it is easier to
solve for propagation in a direction transverse to the
homogeneous boundaries, i.c., the y direction.

From the boundary conditions and Maxwell’s equations,
integral equations for the transverse field components are
set up. In order that they can be solved on a computer,
they are transformed via Galerkin’s technique into scalar
equations. In this approach, the integral equations are
transformed into the space spanned by the set of functions
used to discretize the unknown field components E, and
E._. These functions are chosen to model as accurately as
possible the field components so that few terms are needed
for adequate convergence. This includes taking into account
the diffraction of the field due to the presence of the 90°
metal edges at x=+a/2, y=0.

The scalar equations so obtained describe propagation
in the transverse direction. The resonant frequencies of
this equivalent network are those frequencies for which the
total admittance at any point in the circuit vanishes. Thus,
for a given value of k,, the propagation constant is found
as that value that causes the total transverse admittance to
vanish [5]-[8].

This approach is found to give fast convergence for the
value of beta. For most practical applications, a 2 by 2 or,
at most, a 4 by 4 matrix is all that is required to be solved.

III. FORMULATION OF ADMITTANCE OPERATORS

The transverse discontinuity at y =0 in the guide cross
section (i.e., the diffraction due to the metal edges) results
in a hybrid mode structure. Thus a full six-field analysis is
required. The six field components can be obtained from
the superposition of z-directed LSE and LSM modes. For
propagation in the y direction, these appear to be y-
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directed TE and TM modes. Thus, the hybrid mode can be
derived from y-directed electric and magnetic Hertzian
vector potentials, IT, and IT,.

These are of the form

I, =a,4,(x, y)e /. (2)

From the potentials, the fields are derived by

O,=a,.(x,y)e

E=— jou,v XII, +erkill,+vv-1I,

(3a)

H= joege, v X, + ¢k, +vv-1I,.  (3b)
The scalars ¢ (x, y) and ,(x, y) must be chosen to
satisfy the correct boundary conditions for the field com-
ponents and have dimensional consistency. In the follow-
ing analysis, the z dependence ¢™/#? will be suppressed.

The IDG structure can be considered to be a dielectric-
filled rectangular waveguide with one of the side walls
removed. Hence, the field in the slot can be constructed
from the superposition of discrete waveguide mode func-
tions. In the air region, of course, a continuous spectrum
of solutions is possible. The field in each region will thus
have to be derived from separate sets of potential func-
tions, which must be continuous across the interface be-
tween the two regions. ‘

The admittance operators are formulated from the
transverse equivalent circuit. For propagation in the y
direction, the slot appears as a short-circuited length of
dielectric-filled parallel-plate waveguide radiating into free
space. Considering only even-mode solutions with respect
to x, then the potential functions are chosen as follows.

In the slot region,

%) , 1
V(o)=L = Fen (%)
n=02... JO€ Hﬂ]2+52]1/2 .
cosk,(y +h)
sk )
0= & T (x)
vl )= ' DX
) v
a
sink,(y+h)
- sink,h 4
sink,h (4b)
where
25, [nn ,
Ppa(x) = Cos[—}x ¢en(x)=—sin[——]x
v a s -
n“\/2 n=
8,=1 n#0

and the conservation of wavenumber gives

nw 2
erk§=kf+[*—] + B2
a
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In the air region,

I'(p)
Jweg
Vu(p)
Jopg

bl ) = [(o e me)e (@)

o+

W) = [0 i () My (4

o+
where ¢,(x, p) =/2/mcospx, ¢,(x,p)=/2/7sinpx and
the conservation of wavenumber gives

k3= K2+ 0+ B2,

The orthogonal sets ¢,,(x) and ¢,(x, p) are normalized so
that

[ 10 () dx = B

(5)

The amplitude functions are chosen for the sake of con-
venience and in order to give the unknown amplitudes V,”/
and I the dimensions of a voltage and current, respec-
tively. This will become useful when circuit analogies are
made.

By placing the potential functions (4) into (3), the field
components in the slot can be found to be

'/:oth(x’ P)¢h(x, p’) dp = 5(p _ p').

Ex= % E..¢$ hn(x)%ﬁ (6a)
E,= g yien( ﬁgos(—]f—;{i) (6b)
E = g‘, E.en( S—I%%}Q (6¢)
H, = %2 xoen ES—CI%S%Z—Q (6d)
H,= nngiywhn(x)s—m—ggj—@ (6¢)

z Z H"n hn( )

n=0,2

6f
cosk,h (69)

Analogous expressions can be found for the air region. The
amplitudes E,,, E,,, etc., are as yet unknown.

It is desired that the E fields transverse to y in (6) be
retained as the unknown quantities, whereas the two re-
maining quantities transverse to y, i.e., H,, H, , be ex-
pressed in terms of the above two. By straightforward
Fourier analysis of (6) over the slot, it is possible to
express each set of amplitudes, e.g., H,,, as a linear
operation on the amplitudes E,,, E,,. This linear transfor-
mation can be written compactly by means of linear
integral operators acting on the fields E (x,0), E(x,0) to
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give the field H,(x,0), namely
H,(x,0) = foa/zYu(x, x',y=y'=0)E (x’,0)dx

a/2
+f0 / Y (x,x"; y=y'=0)E,(x’',0) dx’

=Y, -E,+ Y, E, (7)

and similarly for H,(x,0). Analogous expressions hold in
the air region. Thus we obtain for each region integral

equations of the type ‘
i[ Hz(x70) — }:ffa }:lsia . Ex(x’o) (8)
— H,(x,0) e ¥vue| | EA(x,0)
where the symbols s, a and the signs on the LHS refer to
the slot and air region, respectively.

The signs are consistent with power flow into each
region from the interface. Continuity of the fields at the
interface (y=0) will give an integral equation in the
unknowns E (x,0), E,(x,0). In order that both unknowns
can be expanded in terms of the same set of functions, we
require that they display the same x dependence. This will
be so if, instead of E,(x,0), the problem is formulated in
terms of dE,(x,0)/dx. As an added bonus, proper conver-
gence of the admittance operators will also result from this
transformation. Thus, by integration by parts of (8), we

obtain
na [T L E
tlm/al “dxi=| . ~
[ / fm } 4 [Y;f“ e | Lasmasya
As shown by Ttoh [4], a hybrid field can be resolved into
pure TE or TM components by a coordinate rotation
about the direction of propagation. Following this proce-
dure, angles can be defined that give rise to pure TE
(I, =0) or TM (V) =0) fields. In the slot region, these
angles are defined as

na .
@ B
a .
cosf =7 - 2 sinf = = p— v
a a
and for the air region,
P B
cosl = ——r— sinf = ————.
[p2_|_'82]1/2 [p2+ﬁ2]1/2

Using these definitions, the Green admittances obtained
from (9) are, in the slot region,

N
s= Y (Y/cos?8+Y, sin’8)e,,(x) by, (x) (102)
n=10,2
Yo=-13
N
3 j(Y,:—Y")cosesmo( ERETWED
n=24
(10b)
N ) 1 2
Y= 3 (Yn’sin20+Y,,"c0520)(;) (X)) (x).
n=2,4
(10¢)
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Fig. 2. The transverse equivalent circuit representation for inset dielec-

tric waveguide.

In the air region, the admittances are

Y= fow do (Y'(p)cos?8+Y"(p)sin’f)

¢, (x, 0) 94 (X", p) (10d)
Y= Yaa=["dpj(¥(p)+Y"(p))
-sinﬂcosﬁ(—w—)%(x,p)¢h(x’,p) (10e)
ap
Ys= [~ do (Y'(p)sin?6 +Y"(p)cos*8)
0
(S eitrmnntxn) (101
ap

where Y, and Y, are the input admittances of the slot
seen by the nth order TM and TE modes, respectively, i.c.,

n

we k,
Y, =— j-—cot(k,h) Y =~ j—cot(k,h).
kn Wlg

In the air region, Y'(p) and Y"'(p) are the admittances of
the TM and TE plane waves:

wey ., _ ky(P)
e P

This formulation gives rise to the transverse equivalent
circuit representation shown in Fig. 2. The slot field is
composed of an infinite number of TE and TM compo-
nents which are transformed (by the coordinate rotation)
into a radiation admittance. It is noted that this formula-
tion can easily be modified to take into account changes in
the transverse geometry of the structure, as is shown later.

Y'(p) =

IV. DEVELOPMENT OF THE DISPERSION EQUATION

Bearing in mind that the admittance operators have
been defined for each region for power flow into each
region from the interface, continuity of the fields at (y = 0)

gives the equation
E (x,0)

(Y1 %dEz(x,O)/dx

=0 (11)

where
Y=Y5+7°

For this equation to be solved, it needs to be discretized.
The equation is discretized by transforming it into the
function space spanned by the set used to expand the
unknown E _(x,0) and E/(x,0). The choice of a finite
expanding set is crucial in achieving rapid convergence in
the dispersion equation; if the choice satisfies the edge
condition, then the “scalar products” in (11) will converge
rapidly and only a few terms may be needed.

The singularity from a 90° metal edge can be shown to
be of the order r /3 [9]. Thus we seek an orthogonal set
of functions that can be weighted by a term that takes into
account the effect of the singularity. A function that shows
the correct singularity behavior at x=+a,/2 and has a
continuous derivative is given by

TRIE

P e

With such a weight function, an obvious choice for the
basis terms are the Gegenbauer polynomials C1/®(x) [10].
Thus we expand the field unknowns in terms of a weighted
set of the normalized even Gegenbauer polynomials (Ap-
pendix I):

W(x)=|1+

(13)

1 2x
F(x)=—-C1/6~, m=0,2,---
m N " a

m

so that

E(n0)=W(x) ¥ Xfo(x) (13a)

m=0,2--

a [ve]
|2 |ae.r0/as=w(x) T 2uf(x). (130)
K m=2,4
Amplitude plots of the weighted basis terms for n = 0,2,4,6
are given in Fig. 3.

Note that, in order to satisfy the boundary conditions of
the E,(x,0) field component, the summation in (13b)
contains no constant term and starts from n=2. The
coefficients X, and Z, are the as yet undetermined ampli-
tudes.

With such a basis set, the mode functions ¢,,(x) and
¢,(x, p) are expanded as

on(0)= T Pufylx)
b(xp)= S Po)nx)  (14)

m=0,2,-
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Fig. 3. Amplitude plots of the first four basis terms.

where the inner products P,, and P, (p), evaluated across
the half slot, are defined as

P = W) f () 10 (x))
= [TW a3V (19)

P, (p) = W(x)f.(x)¢,(x,0)). (16)

The evaluation of P,,, and P,(p) is given in Appendix L.
Upon substituting the series expansions for the fields in
(11) and carrying out the integration, we obtain the matrix

equation
(]

This equation has a nontrivial solution when
det|Y|=0. (18)

In order to recover a scalar transverse equivalent circuit,
it is convenient to consider the fundamental transverse
propagating mode in the slot, seen as a parallel-plate
waveguide terminated by a short circuit at y = — h. This is
incident upon a discontinuity (the transition between the
two regions) and thus excites the radiation modes in the
air region and the higher order nonpropagating transverse
modes in the slot. In this manner, the fundamental slot
mode can be isolated in (11) and all the other contribu-

~0. (17)
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tions lumped together to give

Ex(x’o) - Hz0¢h0(x)

17} s;ciE;(x,O),/dx 0 (19)

where ¥ =Y"* + ¥, and Y"* is the slot admittance operator
with fundamental term removed. Also, the quantity Y
denotes from now on the total admittance with the funda-
mental term removed.

Upon discretization (19) becomes

R

3] {3}

Multiply both sides by [ P, /0]":

(20)
Rearranging,

(21)

g0l 5| (e | Bl s )

However, from (6a) and (13a),

Py X=E,

(23)
and so

HzO
ExO

2]

The normalized admittance of the fundamental slot mode
looking, from y = 0 toward the short circuit is

(24)

H

Ex()

(25)

Jjeotk oh.

Equation (24) represents the admittance of all the higher
order slot modes and air waves as seen from the interface.
At resonance the total admittance seen from both sides of
the interface must total zero. Therefore the equation for

.
-1
'[O:I

When N basis terms are used, ¥;; becomes an N by N
matrix, ¥,, becomes N by N—1,Y, becomes N—1 by
N, and Y,, becomes N—1 by N —1. The overall admit-
tance matrix becomes a square matrix of order (2N —1).

The elements of the admittance matrices of the slot
region occurring in (26) can be found from (10a)-(10c) to
be

-1

Yl 2

Y| Yo
Y,

=0. (26)
¥n

— jootk oh + [[PJO] .

cothyn? — u*(wh/a)
2.2

e8]
Y? = — ju P,
( 11)km J 71=2,Z4,-~ m kn
(27)
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and so on, where

a 7
uE;‘/e,kg——,Bz kn=;Vu2—n2

k=0,2,4,--- m=0,2,4,--- for Y}y
k=0,2,4,--- m=2,4,6,--- for Y,
k=2,4,6,-- m=0,2,4,--- for Yy,
k=2,4,6,--- m=24,6,--- for Y,,.

Corresponding expressions are derived from (10d) and
(10e) for the admittance matrices of the air region. The
apparent pole singularity at p =0 in (10e) and (10f) is in
fact compensated by a zero of P, (p) there.

V. ANALYSIS OF THE PARTIALLY FILLED IDG

In order that the perturbation of the field by the 90°
edges may be minimized, it may be feasible to lower the
level of the diclectric filling in the slot. Such a change in
transverse circuit is easily accommodated by the formula-
tion. For this structure the resonance condition is still
enforced by the plane y =0, so that the air admittance
operators are unchanged. The admittance operators for the
slot region must be modified to take into account the new
y variation. The y dependence is given for ¢,(x, y) and
Y, (x, y), respectively, as the current and voltage variation
along a cascaded section of transmission line. Hence, with
suitable normalization, the potentials become
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Fig. 4. The simplified transverse equivalent circuit obtained by assum-
ing that only the fundamental slot mode is propagating.

Yo"

former-coupled via the coordinate rotation and coupled to
a radiation admittance. The transverse equivalent circuit is
shown in Fig. 2.

When propagation in the transverse y direction is con-
sidered, the admittance terms can be characterized as
follows: the Y}, and Y,, terms give the TE and TM mode
admittances, respectively, and the Y,, and Y,, terms give
the coupling between the two polarizations. In general the
dispersion equation (26) will contain both TE and TM
components. However, when only the first basis term
(m=0) is used in (26), the matrix equation reduces to the
scalar equation

7 uh Y,
—jeot| — |+ —=0.
a

(29)
P

This equation contains only TE components, thus allowing
a simplification to be made to the transverse equivalent

® I'n 1 JYgsink,, +(y+h,)+ Y/ cosk,,(y+h,)
X, y)= — - = — |, h,<y<0 (28
Vol y) ”E)Q Jwe HE]2+IBZ}I/2¢€"()€)[ JYJ'sink ,h,+ Y/ cosk,,h, 28 ) (282)
a
0, () = i Vn" 8 (x) Yycosk,,(y+hy)+ jY/ sink,,(y+h) (280
e n=02,- J@g Hn—qz]z+ﬁz}l/2 " Ygrcoskahy + jY/ sink,, hy )
a

where

Y/ =— jYJ/cotk, Y/ =~ jY/'cotk, h,.

The subscripts 1 and 2 refer to propagation in the dielec-
tric- and air-filled regions of the slot, respectively (see Fig.
8). With these potential functions, the analysis is repeated
directly as before. The modified admittance operators for
the partially filled slow case can be found by inspection
from (10) by replacing ¥,/ and Y, with the TM and TE
admittances for a cascaded section of transmission line,
demonstrating the adaptability of this approach.

VI. SiMPLIFIED TRANSVERSE EQUIVALENT CIRCUIT

The hybrid field can, by a rotation in the coordinate
system established in [4], be resolved into TE and TM
components. This is useful in enabling us to develop an
equivalent circuit model for the transverse network. This
consists of short-circuited lengths of transmission line, one
for each TM and TE slot component. which are trans-

circuit. Writing (29) out fully,

’ [wuh] © cothyn?—u?(wh/a) [ P,, |?
— jeot|— I+ ju )
a n=2 n2_u2 POO
w? oo 1 [R(o) ]
+ — dp =0 (30
JU'/O \/w2—52[ Poy (30
where

a a a
u= e kg =B w=_yB’—ki Pp=—_p.

This equation contains the “effective” frequency variable
u, which is the y-directed wavenumber for the fundamen-
tal mode in the slot. Thus, by considering the frequency
dependence of (30) with u, the terms can be identified as
elements in a transverse equivalent circuit for the funda-
mental mode. In this way the terms in (30) can be identi-
fied as follows: the first term is an inductance in u
representing a short-circuited length of transmission line
for the fundamental mode. The second term is capacitive
and represents the energy storage in the slot due to the
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TABLE I
THE VALUES OF PROPAGATION CONSTANT CALCULATED FOR AN X-BAND SampLE of IDG USING
THE FIRST THREE ORDERS OF EXPANSION OF THE DiISPERSION EQUATION
Frequency First Order Second Order Third Order
(GHz) (n=20) (n=0,2) (n=0,2,4)
7 1.7143 — ;0.000185 1.7097 — ;0.000183 1.7095 — j0.000183
8 2.0307 — ;0.000220 2.0258 — j0.000219 2.0257 — j0.000219
9 2.3464 — j0.000255 2.3415 — j0.000254 2.3413 — j0.000254
10 2.6617 — ;0.000289 2.6570 — ;0.000289 2.6568 — j0.000289
11 29768 — j0.000323 29722 — j0.000323 2.9720 — ;j0.000323
12 3.2914 — ;0.000357 3.2871 — j0.000356 2.2869 — j0.000356
13 3.6057 — j0.000390 3.6016 — 70.000390 3.6015 — ;0.000390
a=1.016 cm; h=1524 cm; ¢, =208 — ;0.000416.
nonpropagating modes. The third term describes the en- tion is given by
ergy storage of the nonpropagating TE modes in the air 1 energy dissipated by conducting surfaces
region. o, =— Np/cm.

The admittance terms identified in this way give rise to
the simple transverse equivalent circuit shown in Fig. 4.

VIL

Even in the absence of conduction losses, the solution of
the dispersion equation (26) in the complex 8 plane will
give rise to a complex value of 8:

B=B~jB". (31)

The complex part of 8 is due to the losses incurred by
radiation away from the guide, and by dissipation in the
dielectric. '

In a dielectric slab waveguide, radiation loss occurs
when B is less than k,, the cutoff point for a dielectric
guide. Physically, this can be seen as the diffraction of the
guided wave by the air/diclectric interface, giving rise to a
leaky wave in the air region. Above 8=k, the gulded
wave is fully bound in the guide (using the “bouncing ray”
analogy, the angle of incidence on the dielectric/air
boundary is greater than the critical angle), and so no
radiation can occur. In the IDG, the fields peak at the
metal corners, as depicted in Fig, 7. In the presence of the
slightest irregularity, the propagating mode begins to
radiate near cutoff, merging smoothly with a leaky wave
below cutoff (see Fig. 11). This effect is not important in
the operative range of the guide, and although implicit
from the above model, will be omitted in the following
calculations.

The dielectric losses can be accounted for by using a
complex value for the relative permittivity €,. The dielec-
tric losses are found to be of the same order as the loss
tangent. Table I gives the computed values of B for
different orders of expansion of (26). The values were
computed for a dielectric filling of PTFE which was as-
sumed to have a loss tangent of 2x1074.

GUIDE Loss CALCULATIONS

Calculation of the Conduction Losses

The conduction loss can be found by the classical per-
turbation approach [5, p. 187]. The corresponding attenua-

c 2 energy transmitted along guide

(32)

This loss, if sufficiently small, will not substantially change
the fields in the guide. With this assumption, the loss
components can be calculated using the loss-free fields.
The field in the guide will induce currents in the conduct-
ing walls:

J.=n X H,n=inward directed normal at the guide wall.
(33)

These currents will be dissipated as 2R losses. The surface
resistance of a conductor can be expressed as

Wi
=4y = 34
) o (0

and so the time-averaged power loss per unit length of
guide is given as

R

R,
p=="

e= (nx H)-(nx H*) dl.

guide
walls

Rm
T Jrdl =
guide 2
walls
Due to the guide symmetry, the integrals need only be
evaluated over one half of the guide cross section. The
currents induced in the ground plane can be neglected, and
$O

P - 52,1 fou/z

R, o
-/ (HHX S HHY) dy

(H,H*+ H_H*) dx

(W/cm). (35)

The power flow along the guide can be evaluated as the
time-averaged Poynting vector over the guide cross sec-
tion:

1
—_ *Y.
p= 2[/ Re(E X H*)-a_dS(W)
section

2l

Cross
section

EH*

HXE,))dS.  (36)
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Thus
P

¢

o =

=3p Np/cm.

(37)

Having solved for 8, the basis amplitudes X and Z can
be found from (21). From these, the mode amplitudes of
the field components given in (6) can be found as

E =P-X
1 na
E’vnz—[?}cotknh“ ]P;-X+j,8

a

(38a)

ﬂp,;-z} (38b)

1
E, = [—«] r-z (38¢)
n
nw]cotk, h
]
a ‘Ollolfn
na 2
a erké—[—]
: BP,:-X+J'[~] —|prz | (384)
7} n2
1 7],
. [ j/zp;-x+[—]p;-z] (38¢)
’ Joto a
1 cotk,h T
= [— JkZ Pl X + —BP,:~Z]. (38f)
} Wik g n 7 a

Similar results can be found for the components in the air
region. By substituting these expressions into (6) and
evaluating the integrals (35) and (36), the conduction loss
can easily be evaluated. For most purposes, it is sufficient
to consider the fundamental approximation only so that
X, is the only finite amplitude term. The expressions (38)
are then considerably reduced. '
The overall guide loss will be given as

a=a, +B". (39)

VIIL

For ease of manufacture and availability of equipment,
the experimental prototypes were made from slots 1.016
cm wide, for transition into X-band rectangular wave-
guide. All measurements were carried out on an HP 8510
analyzer. The substitution measurements were carried out
over the X-band (8-12.4 GHz). The dispersion and Q
measurements were obtained from iris-coupled resonant
lengths of IDG. The irises, being symmetrically placed in
the launching guide, did not excite the higher TE,, rectan-
gular waveguide mode and so the measurement range was
determined by the cutoff of the higher order mode of the
IDG. It is noted that the operation band of the IDG is
somewhat broader than X-band. The guide dimensions
were somewhat arbitrary, although to facilitate the transi-
tion to rectangular waveguide the slot width was kept the
same as the narrow waveguide dimension. The slot depth
again is variable, although for efficient coupling to rectan-
gular waveguide it should be at least one half of the broad
waveguide dimension. For the measurements two slot sizes

CoMPUTED AND MEASURED RESULTS
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%
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Dielectric
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Fig. 5. The transition between rectangular waveguide and IDG.
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Fig. 6. The measured reflection from a rectangular waveguide to IDG

transition with and without a dielectric taper.

were available, with 4 /a=1.0 and % /a =1.5. The dielec-
tric inserts were machined from PTFE which had an
assumed dielectric constant of 2.08. The transition from
rectangular waveguide to IDG was carried out by a dielec-
tric taper, as shown in Fig. 5. The measured SWR of this
transition with and without the taper is shown in Fig. 6.
The length of the taper in this case was 50 mm and it can
be seen that with a taper the SWR of the transition is
better than 1:1.12 across the band. It is noted that the
length was not optimized; rather, it was arbitrarily chosen
so as to be longer than one guided wavelength over the
band.

The hybrid modes of IDG are designated HE,,, or
EH, , according to the relative dominance of the TE- or
TM-to-y components, respectively. The subscripts n, m
refer to the number of half-wave variations across the slot
and down the slot. The field magnitude plots of the
fundamental HE,, mode taken across a transverse section
are given in Fig. 7. These were obtained by solving the
dispersion equation for 8 and then using (21) to find the
basis amplitude coefficients. These could then be used to
calculate the field coefficients in (38), which then gave the
fields in (6). The field plots show that the fundamental
mode is essentially TE with respect to y with the compo-
nents E,, H,, H_. In the slot these terms dominate, the TM
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Fig. 7. The field components of the fundamental HE;, mode plotted as
the magnitude values over the transverse guide section.
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Fig. 8. A comparison of computed and measured dispersion curves for
various samples of IDG at X-band.
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Fig. 9. Computed dispersion curves for the even modes of an X-band
sample of IDG up to 40 GHz.

components are only excited in order to satisfy the
boundary conditions imposed by the 90° edge. Also evi-
dent from the plots is the singularity due to the edge. The
z-directed components, as expected, are not affected by the
edge and show no singular behavior.

The dispersion characteristics of several IDG geometries
were measured by using a resonant line technique. The
comparison between the measured and computed results is
shown in Fig. 8. The computed resuits were calculated
from a second-order expansion, and are within 1 percent
of the measured values. It is noted that the dielectric
constant of PTFE was taken to be 2.08, but the un-
certainty as to its actual value is +2 percent, yielding a
+ 1-percent uncertainty in the computed results.

Each term in the basis set models a particular field
variation across the slot. For example the n=2 term
models the modes for which k= (27/a). Therefore, when
the values of B for the HE,, modes are sought, the
expansion must contain at least m /2 terms (considering
even modes only). In Fig. 9 the dispersion curves for the
even modes above cutoff of the X-band IDG are plotted,
using the second-order expansions.

The computed loss of a sample of IDG with dimensions
1.016 cm by 1.524 cm and made from copper is given in
Table II for two different dielectric fillings. It can be seen
that the dielectric loss is of the order of the loss tangent of
the dielectric used. Obviously Perspex, with its particularly
high loss tangent, would not be used for a practical IDG.
The table shows that the large conductor area surrounding
the dielectric does not substantially add to the guide loss,
while the greater confinement of the field into the dielec-
tric, causing more dielectric loss, does.

The loss of a 20-cm section of IDG made of brass and
with PTFE filling was measured using a substitution tech-
nique. The comparison with computed values is shown in
Fig. 10. The resistivity ‘of the brass was taken to be
6.2x107% ©-m and no factor was introduced to take into
account any surface roughness. The @ factor of a resonant
section of IDG was measured and the results are compared
in Fig. 11 with those obtained from the approximate
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TABLE II
COMPUTED VALUES OF LOSS FOR A SECTION OF IDG MADE OF COPPER
WITH DIMENSIONS 1.016 ¢M X 1.524 cM

Dielectric Filling of PTFE (¢, = 2.08 — j0.000416)

Frequency Conductor Loss  Dielectric and Total Loss Q factor
Radiation Loss
(GHz) (Np/cm) (Np/cm) dB/wave dB/m
8 —0.000103 —0.000220 —0.00870 -—0281 3084.5
9 —0.000110 —0.000255 -0.00850 -—-0.317 29923
10 -0.000117 —0.000289 —0.00833 —0.353 29294
11 —0.000123 —0.000323 —0.00818 —0.387 2886.8
12 —0.000128 —0.000357 —0.00804 —0.421 28586
Dielectric Filling of PERSPEX (¢, = 2.50— j0.02075)
Frequency Conductor Loss Dielectric and  Total Loss Q factor
Radiation Loss -
(GHz) (Np/cm) (Np/cm) dB/wave dB/m
8 —0.000117 —-0.0107 —-0.2618 —937 91.5
9 —0.000124 -0.0122 -02591 -1072 87.7
10 —0.000131 ~0.0137 -02567 —12.04 85.0
11 —0.000136 —0.0152 —-0.2545 —-13.34 83.0
12 —0.000141 —0.0167 ~0.2524 1462 81.6
LOSS 3000
dB/m W L computed values
0.0 Q
/.
0.5 | .__._._.,0"\._._.\./. v oy
1.0 | . N
® - Measured points
o
15 | 2000 | °
2.0 |* ° <
2.5 L b
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3.0 | dielectric : PTFE o \\
a = 1.016cm h = 1.524cm
1000 - a = 1.016 cm
9 10 1 12 " : : .
. Frequency GHz © dlelectr;c : PTFE
Fig. 10. A comparison of the measured and computed values of loss for
a 20-cm section of IDG.
formula derived in Appendix II. It can be seen from both T T ' ' T T ' ™
. . . . 7 8 9 10 11 12 13 14 15 16
figures that there is a discrepancy between the computed
. .. frequency GHz
and measured results at the lower frequencies. This is due
to the fact that radiation loss mainly due to edge diffrac- Fig. 11. A comparison between the measured and computed Q values

tion has not been taken into account. This loss will be
more pronounced at lower frequencies. The analysis has
shown a good correlation with the measured results. How-
ever it is noted that the samples measured approached the
ideal structure in that the dielectric was machined to
closely fit the slot. Practical structures for high mm wave
use will be constructed from casting resins or screen print-
ing [11] and so will depart more from the ideal structure.

Investigation into the increased loss due to air voids at
the metal /dielectric boundaries and dielectric inhomo-
geneities are not considered here but merit further atten-
tion.

IX. CONCLUSIONS

This work describes a highly accurate method for the
analysis of IDG with a minimum of computational effort.
The method can be easily adapted to such structures as
ridged waveguide and finline with thick conductors.

of a resonant section of IDG.

The propagation constants of the first few modes and
the loss of IDG have been calculated, showing good agree-
ment with measured results. It has been shown that, in the
practical operating range, the loss is dominated by the
dielectric loss.

APPENDIX |
THE DETERMINATION OF THE COEFFICIENTS P, , AND
P,(p)
The coefficients P,,, and P, (p) have been defined as
an=<W(x)fm(x)¢hn(x)> (Al)
P,(p) = (W(x)f.(x),(x,0)) (A2)
where
24, 2
Sn(x) = = cos(nn/a)x y(x,p) =) = cosp
a T

(A3)
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and the weighting function, defined to model the edge However, the group velocity is
singularity, is .
, Pfy X, ¢
2 —1/3 ( No &
W(x)={1-(2x/a Ad T .
From tables [10] the integral is found:
i ~1/2 (=D Wr(2n+21)) +2n(b)
(1-1¢?) CY,(t)cosbtdt = Rev>—1/2,b>0]. A5
With the substitutions v =1/6, t=2x / a, b=nw/2, and . Therefore,
m = 2n, we can write
1 whgle, e, K} (A13)
1 na =— = . 1
m /2
1 3\F( 1) 3]Jm+1/6[7] 2o Age V2o
Pon=5~ (A6)
m m'I‘[ ] (n 77)1/6 ACKNOWLEDGMENT
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where (W) is the time-averaged total energy stored in the
propagating mode per unit length (J/cm), and { Pd) is the
time-averaged power lost from propagating mode per unit
length (W /cm). If {(Pf) is the time-averaged power flow
along guide, then

(Pd)

<Ff)

o=

N =

and so (A12)

1 (W)

2a {(Pf)
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