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Rigorous Analysis and Network Modeling of
the Inset Dielectric Guide

T. ROZZI, SENIOR MEMBER, IEEE, AND STEPHEN J. HEDGES

Abstract —The inset dielectric guide (IDG) is an easy-to-fabticate alter-

native to image line and $ also less s&sitive to loss by radiation at

discontinuities. This paper presents a rigorous variational analysis in space

domain based on field and network considerations (transverse resonance

diffraction). This approach yields an accurate transverse equivalent net-

work for the fundamental mode suitable for evaluation by a desktop

calculator. Theoretical and experimental results are in excellent agree-

ment.

1. INTRODUCTION

cONSIDERABLE EFFORT has been spent on the

development of trrmsinission media suitable for mi-

crowave and millimeter-wave communications, obvious ex-

amples being finline and image line. At high frequencies,

as circuit dimensions and tolerances become smaller, the

cost of such circuits rises. High circuit costs may in fact

become the limiting factor to the every-increasing corrimer-

cial development in millimeter-wave technology. Thus, the

ease of manufacture and capability for mass production

are becoming as important as the circuit performance of

such media.

Image line is a reco~ized low-loss transmission media,

but its main disadvantage besides manufacturing difficul-

ties is its radiation loss from all practical components. In

order to confine the field more to the structure, trapped

image guide has been proposed [1], but this is even harder

to make, especially for small guide dimensions. In order to

overcome such manufacturing difficulties, inset dielectric

guide (IDG), shown in cross section in Fig. 1, has been

proposed as a low-cost alternative [2]. IDG, which is just a

rectangular groove filled with dielectric, has many of the

advantages of the trapped image guide without its fabrica-

tion problems.

With the high cost of circuit manufacture, the design of

circuits using trial and error is prohibitive; to be viable, the

transmission media must be accurately characterized to

enable circuits to be built that work the first time.

The IDG structure has been analyzed previously, by

Zhou and Itoh [3], as an intermediate structure in the

analysis of trapped image guide. This analysis used the
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Fig. 1, The cross-sectional structure of inset dielectric waveguide show-

ing the coordinate system used in the analysis.

effective dielectric constant (EDC) method and it gave

useful approximate results for the fundamental mode. The

singularity imposed on the field by the 90° metal edges,

however, causes diffraction, which is important for the

accurate evaluation of the modal cutoffs, field distribu-

tions, and transmission losses. We will con8ider here a

general solution to the IDG, which yields an accurate

equivalent circuit for the ‘fundamental mode.

In recent years, the spectral-domain approach developed

by Itoh [4] has been preferred over the space-domain

approach for the numerical solution of boundary value

problems. In both approaches, the fields are derived from

potential functions, which, along with the necessary

boundary condition$ can be formulated into sets of in-

tegral equations that can be solved for the propagation

constant.

In the space-domain approach, these integrals are solved

directly by Galerkin’s method, the unknown functions

being expanded by a suitable set of basis functions. In the

spectral-domain approach, the integral equations are trans-

formed into the Fourier domain prior to solution by

Galerkin’s method. The advantage of the latter method is
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that the integral equation is often easier to formulate, the

Green’s functions often being found by inspection. How-

ever, the choice of expansion sets required for solution in

the Fourier domain is restricted by the requirement that

they have simple Fourier transforms. Thus, functions that

do not accurately model the edge conditions are sometimes

used, which results in a slow convergence rate.

The approach outlined in this paper is a space-domain

approach. Unlike the spectral-domain approach, there is

no restriction on the choice of expansion functions. In fact,

the functions used are particularly accurate in that they

take into account the singularity imposed on the guide

field by ,the 90° metal edges. The problem is formulated so

that only one set of basis functions is required, which

results in a further increase in accuracy. As a result, the

convergence is very rapid, and often only the first term of

the expansion set is sufficient.

II. TRANSVERSE RESONANCE DIFFRACTION

The coordinate system used in this analysis is shown,

along with the guide structure, in Fig. 1. For each homoge-

neous region, we may write

c,k; =k:+k; +~2 (1)

where ~ is the z-directed propagation constant to be

determined. For such a composite structure it is easier to

solve for propagation in a direction transverse to the

homogeneous boundaries, i.e., the y direction.

From the boundary conditions and Maxwell’s equations,

integral equations for the transverse field components are

set up. In order that they can be solved on a computer,

they are transformed via Galerlcin’s technique into scalar

equations. In this approach, the integral equations are

transformed into the space spanned by the set of functions

used to discretize the unknown field components EX and

E=. These functions are chosen to model as accurately as

possible the field components so that few terms are needed

for adequate convergence. This includes taking into account

the diffraction of the field due to the presence of the 90°

metal edges at x = ~ a/2, y = O.

The scalar equations so obtained describe propagation

in the transverse direction. The resonant frequencies of

this equivalent network are those frequencies for which the

total admittance at any point in the circuit vanishes. Thus,

for a given value of k ~, the propagation constant is found

as that value that causes the total transverse admittance to

vanish [5]–[8].
This approach is found to give fast convergence for the

value of beta. For most practical applications, a 2 by 2 or,

at most, a 4 by 4 matrix is all that is required to be solved.

III. FORMULATION OFADMITTANCE OPERATORS

The transverse discontinuity at ~ = O in the guide cross

section (i.e., the diffraction due to the metal edges) results

in a hybrid mode structure. Thus a full six-field analysis is

required. The six field components can be obtained from

the superposition of z-directed LSE and LSM modes. For

propagation in the y direction, these appear to be y-

directed TE and TM modes. Thus, the hybrid mode can be

derived from y-directed electric and magnetic Hertzian

vector potentials, IIk and II,.

These are of the form

Iie= ay+e(x, y)e-Jpz IIk = a,i)h(x, y)e-~pz. (2)

From the potentials, the fields are derived by

E=–jupOV X~k+crk~~, +VV. H, (3a)

H= Jticocrv X He+ crk~IIh +VV”~h. (3b)

The scalars +=(x, y) and ~~(x, y) must be chosen to

satisfy the correct boundary conditions for the field com-

ponents and have dimensional consistency. In the follow-

ing analysis, the z dependence e ‘J~z will be suppressed.

The IDG structure can be considered to be a dielectric-

filled rectangular waveguide with one of the side walls

removed. Hence, the field in the slot can be constructed

from the superposition of discrete waveguide mode func-

tions. In the air region, of course, a continuous spectrum

of solutions is possible. The field in each region will thus

have to be derived from separate sets of potential func-

tions, which must be continuous across the interface be-

tween the two regions.

The admittance operators are formulated from the

transverse equivalent circuit. For propagation in the y

direction, the slot appears as a short-circuited length of

dielectric-filled parallel-plate waveguide radiating into free

space. Considering only even-mode solutions with respect

to x, then the potential functions are chosen as follows.

In the slot region,

l),(x, y) = ~ L

‘=0’2””;’[[3:+~21’’20’’(x)

sink~(y+h)

sin k.h

where

(4a)

(4b)

[1n’n
oh.(x) = $Cos — x [1

n T’
+,.(x) =~sin — x

a a

an=~ n=()
42

l!in=l n#O

and the conservation of wavenumber gives
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In the air region, give the field HZ(X, O), namely

825

cm I’(p) Hz(x, o) =~’2Y11(x, x’, y = y’=o)Ex(x’,o)dx
+,(x, y)= ~ dp~ ~p, ~B2@,(x, p)e-~’y~ (4C)

:J (“’2Y12 X,.X’; y = y’=()) EZ(x’, ()) dx’

v“(p) 1 0

+~tx>y)=~”dp- ,dh(x, ~)e-~kyy (4d) = ~ll-EX+ f12.EZ
JWO 4P2+ b

(7)

and similarly for H,(x, O). Analogous expressions hold in
where $A(x, p) = J2\7rcos px, +,(x, p) = ~2/7r sin px and the air region. Thus we obtain for each region integral
the conservation of wavenumber gives equations of the type

k~=k; +p2+P2.

The orthogonal sets +~.(x) and +~(x, p) are normalized so +-%Hol=[z2:1”[%$11‘8)
that where the symbols s, a and the signs on the LHS refer to

~/2@hn(~)@,m(x)dx=~nm

the slot and air region, respectively.

The signs are consistent with power flow into each
o

region from the interface. Continuity of the fields at the

Jw4h(x>P)+,(x7P’) dP=~(P-P’). (5)
interface (y = O) will give an integral equation in the

o unknowns E.(x, O), E,(x, O). In order that both unknowns

The amplitude functions are chosen for the sake of con-

venience and in order to give the unknown amplitudes Vi’

and I; the dimensions of a voltage and current, respec-

tively. This will become useful when circuit analogies are

made.

By placing the potential functions (4) into (3), the field

components in the slot can be found to be

sink. (y+h)
fix = i &H@hn(~) (6a)

n==o,2 sin k.h

N cosk. (y+h)
E,= z EY.%(x) (6b)

~= 2,4 cosk.h

sink. (y+h)
E== ~ J%24..(x) (6c)

n= 2,4 sin k.h

cosk~(y+h)
Hx = : ~xn4e.(x) (6d)

n = 2,4 COS k,h

sinkfl(y+h)
Ify = f ~yn4hn(x)

n=o,2 sin k.h

Coskn(y+h)
HZ= ~ H,#h.(x) (6f)

t7=(),* COS kflh “

can be expanded in terms of the same set of functions, we

require that they display the same x dependence. This will

be so if, instead of E:(x, 0), the problem is formulated in

terms of dEZ(x, 0)/dx. As an added bonus, proper conver-

gence of the admittance operators will also result from this “

transformation. Thus, by integration by parts of (8), we

obtain

As shown by Itoh [4], a hybrid field can be resolved into

pure TE or TM components by a coordinate rotation

about the direction of propagation. Following this proce-

dure, angles can be defined that give rise to pure TE

(Ii = O) or TM (V;’= 0) fields. In the slot region, these

angles are defined as

nlr

c0so=[(3~f12‘ino=[(:L211’2

Analogous expressions can be found for the air region. The

amplitudes EX., EYfl, etc., are as yet unknown.

It is desired that the E fields transverse to y in (6) be

retained as the unknown quantities, whereas the two re-

maining quantities transverse to y, i.e., Hz, HX, be ex-

pressed in terms of the above two. By straightforward

Fourier analysis of (6) over the slot, it is possible to

express each set of amplitudes, e.g., Hzn, as a linear

operation on the amplitudes EX., E=.. This linear transfor-

mation can be written compactly by means of linear

integral operators acting on the fields EX(X, O), E(x, O) to

and for the air region,
(6e)

(P2 +~’11/* sine -

b
Cos e =

[p2+p2]v2”

Using these definitions, the Green admittances obtained

from (9) are, in the slot region,

Y:l= ~ (Y~cos26 + Y{’sin26)@h. (x)@hn(x’)
n= 0,2

y;2 = – y’
21

= ~: d~(y; -y;’) cosesine(;)+hn( x)+hn

(lOa)

x’)

(lOb)
N 12

()Y~z = ~ (Y.’ sin2d + Y.’’cos26) – 4k. (x)4k~(x’).
n)?=2,4

(1OC)
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2. The transverse equivalent circuit representation for inset dielec-

tric waveguide.

In the air region, the admittances are

Y~l=~~dp(Y’(p)cos28 +Y’’(p)sin2d)

“%( X> P)%(X’>P) (lOd)

Y:,= -Y,,a =JmdPj(Y’(P)+ Y“(P))
o

(i
.sin Ocosd ~ @h(x, p)@k(x’, p) (lOe)

Y&=~~dp(Y((p)sin2d+ y’’(p) cos20)
o

(1
2

:’ 4%(x, P)+h(x’>P)
.— (lOf)

where Y.’ and Y.” are the input admittances of the slot

seen by the n th order TM and TE modes, respectively, i.e.,

In the air region, Y’(p) and Y“(p) are the admittances of

the TM and TE plane waves:

yf(p) . ._E!?_
ky(p)

This formulation gives rise

fq(P)
Y“(p)=-.

up ()

to the transverse equivalent
circuit representation shown in Fig. 2. The slot field is
composed of an infinite number of TE and TM compo-

nents which are transformed (by the coordinate rotation)

into a radiation admittance. It is noted that this formula-

tion can easily be modified to take into account changes in

the transverse geometry of the structure, as is shown later.

IV. DEVELOPMENT OF THE DISPERSION EQUATION

Bearing in mind that the admittance operators have

been defined for each region for power flow into each

region from the interface, continuity of the fields at (y = O)

gives the equation

[1
EX(X, O)

[y]” :dE (x, O)/d~ ‘0 (11)

T=

where

For this equation to be solved, it needs to be discretized.

The equation is discretized by transforming it into the

function space spanned by the set used to expand the

unknown EX(X, O) and E;(x, O). The choice of a finite

expanding set is crucial in achieving rapid convergence in

the dispersion equation; if the choice satisfies the edge

condition, then the “scalar products” in (11) will converge

rapidly and only a few terms may be needed.

The sin~ularity from a 90° metal edge can be shown to
be of the &der ~– 1/3 [9]. Thus we see~ an orthogonal set

of functions that can be weighted by a term that takes into

account the effect of the singularity. A function that shows

the correct singularity behavior at x = + a/2 and has a

continuous derivative is given by

[ [ 11-’/3[1-[:11-’/3
w(x)= 1+ ;

[[11

‘2X 2 -1/3

=1–—.
a

(12)

With such a weight function, an obvious choice for the

basis terms are the Gegenbauer polynomials C~/6(x) [10].

Thus we expand the field unknowns in terms of a weighted

set of the normalized even Gegenbauer polynomials (Ap-

pendix I):

[12x
Fro(x) =;C:16 ; , ~=o,z,... (13)

m

so that

EX(X,O) = W(x) f XMf~(x) (13a)
m=o,2. .

[1: dEz(x,o)/fix= w(x) : Znlfm(x). (13b)
m= 2,4

Amplitude plots of the weighted basis terms for n = 0,2,4,6

are given in Fig. 3.

Note that, in order to satisfy the boundary conditions of
the E,(x, O) field component, the summation in (13b)
contains no constant term and starts from n = 2. The

coefficients X. and Z. are the as yet undetermined ampli-

tudes.

With such a basis set, the mode functions Oh.(x) and

@h(x, P) are expanded as

m=o,2,

+,(x, p) = f Pn,(p)”fm(x)
??l =0,2,...

(14)
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tions lumped together to give1/.

I I
-d 2 alz

where ~ = &’ + ~, and ~s is the slot admittance operator

with fundamental term removed. Also, the quantity ~

denotes from now on the total admittance with the funda-

W(x) c: ( 2x/a)

t
-a/2 a/2

mental term removed.

Upon discretization (19) becomes

[Y1. [q=(-%o).[$]. (20)

(21)

(22)\

Rearranging,

[1 [1; =(- HZO)Y-’. 8.

Multiply both sides by [Po/O]’:
-a12

‘L/

7’+
[P&o’l [;] = [P;>ow[~](-%).

However, from (6a) and (13a),

P;. X= E,.

and so

(23)

(24)

12-a

– HZO

[ [11
—=(P;, O’).Y’l. : -’.

E x“

w

Fig. 3. Amplitude plots of the first four basis terms

The normalized admittance of the fundamental

looking, from y = O toward the short circuit is

slot mode
where the inner products Pm. and P~( p ), evaluated across

the half slot, are defined as

Pmn = (W(X) ~~(x)~h.(x))

‘~”’’~(x)fm(x)$hn(x)dx (Is)
o

Pm(p) = (W(x) fm(x)+,(x, p)). (16)

The evaluation of Pm. and P~( p) is given in Appendix I.

Upon substituting the series expansions for the fields in

(11) and carrying out the integration, we obtain the matrix

equation

H,.
— = – jcot kpoh.
E Xo

(25)

Equation (24) represents the admittance of all the higher

order slot modes and air waves as seen from the interface.

At resonance the total admittance seen from both sides of

the interface must total zero. Therefore the equation for

resonance is

[?!.[; *]-l., f]]-l=o. (26)– jcot kpoh + [Fe]
[Y]. [q=o. (17)

When NM basis terms are used, ~11 becomes an N by N

matrix, Ylz becomes N by N – 1, ~zl becomes N – 1 by

N, and ~22 becomes N – 1 by N – 1. The overall admit-

tance matrix becomes a square matrix of order (2N – 1).

The elements of the admittance matrices of the slot

region occurring in (26) can be found from (lOa)–(lOc) to

be

coth~~ ( fih /a )

(w)km=-~” i
n =2,4,

~n~ ‘knpmn

(27)

This equation has a nontrivial solution when

detlYl=O. (18)

In order to recover a scalar transverse equivalent circuit,

it is convenient to consider the fundamental transverse

propagating mode in the slot, seen as a parallel-plate

waveguide terminated by a short circuit at y = — h. This is

incident upon a discontinuity (the transition between the

two regions) and thus excites the radiation modes in the

air region and the higher order nonpropagating transverse

modes in the slot. In this manner, the fundamental slot

mode can be isolated in (11) and all the other contribu-
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and so on, where

.C ~
~=? ~kz–~l k.= ?~U_

k=0,2,4,... m=0,2,4,.. - for Yll

k=0,2,4, -.. m=2,4,6,. . . for Ylz

k=2,4,6, . . . m=0,2,4,.. . for Y21

k=2,4,6,... m = 2,4,6,--- fol’ Y22-

Corresponding expressions are derived from (lOd) and

(lOe) for the admittance matrices of the air region. The

apparent pole singularity y at p = O in (lOe) and (lOf ) is in

fact compensated by a zero of P,.(p) there.

V. ANALYSIS OF THE PARTIALLY FILLED lDG

In order that the perturbation of the field by the 90°

edges may be minimized, it may be feasible to lower the

level of the dielectric filling in the slot. Such a change in

transverse circuit is easily accommodated by the formula-

tion. For this structure the resonance condition is still

enforced by the plane y = O, so that the air admittance

operators are unchanged. The admittance operators for the

slot region must be modified to take into account the new

y variation. The y dependence is given for +,(x, y) and

$A(x, Y), respectively, as the current and voltage variation
along a cascaded section of transmission line. Hence, with

suitable normalization, the potentials become

0 = kyOh

t i

1’ I J

I J-

?‘0” l-c L

Fig. 4. The sirnphfied transverse equivalent circuit obtained by assure.

ing that only the fundamental slot mode is propagating.

former-coupled via the coordinate rotation and coupled to

a radiation admittance. The transverse equivalent circuit is

shown in Fig. 2.

When propagation in the transverse y direction is con-

sidered, the admittance terms can be characterized as

follows: the Yll and Y12 terms give the TE and TM mode

admittances, respectively, and the Y12 and Y21 terms give

the coupling between the two polarizations. In general the

dispersion equation (26) will contain both TE and TM

components. However, when only the first basis term

(m= O) is used in (26), the matrix equation reduces to the

scalar equation

[1

m-d Yll
– jcot — +—=0.

a P;.
(29)

This equation contains only TE components, thus allowing

a simplification to be made to the transverse equivalent

*e(-’lY)= 5 : ‘ 1 jY~sink.2+ (y+h2)+ Yjcosk.2(y+hZ)

H=02J06E12+B21’’20’n(x)[ 1 h2<y<0 (28a)
jY;’sink~2hz + Y;cosk~2hx ‘

(28b)

where .

The subscripts 1 and 2 refer to propagation in the dielec-

tric- and air-filled regions of the slot, respectively (see Fig.

8). With these potential functions, the analysis is repeated

directly as before. The modified admittance operators for

the partially filled slow case can be found by inspection

from (10) by replacing Y; and Y;’ with the TM and TE

admittances for a cascaded section of transmission line,

demonstrating the adaptability of this approach.

VI. SIMPLIFIED TRANSVERSEEQUIVALENT CIRCUIT

The hybrid field can, by a rotation in the coordinate

system established in [4], be resolved into TE and TM

components. This is useful in enabling us to develop an

equivalent circuit model for the transverse network. This

consists of short-circuited lengths of transmission line, one

for each TM and TE slot component, which are trans-

circuit. Writing (29) out fully,

[1v uh [1coth ~~2( rh/a ) PO. 2
– jcot ~ +ju~

?1=2 m%

HPO(P) 2
+? — = o (30)

~: JwA ’00

where

This equation contains the “effective” frequency variable

u, which is the y-directed wavenumber for the fundamen-

tal mode in the slot. Thus, by considering the frequency

dependence of (30) with u, the terms can be identified as

elements in a transverse equivalent circuit for the funda-

mental mode. In this way the terms in (30) can be identi-

fied as follows: the first term is an inductance in u

representing a short-circuited length of transmission line

for the fundamental mode. The second term is capacitive

and represents the energy storage in the slot due to the
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TABLE I
THE VALUES OF PROPAGATION CONSTANT CALCULATED FOR AN X-BAND SAMPLEOF IDG USING

THE FIRST THREEORDERSOFEXPANSIONOFTHEDISPERSIONEQUATION

Frequency First Order Second Order Third Order
(GHz) (n=O) (n= 0,2) (n=0,2,4)

7 1.7143 –JO.000185 1.7097 – /0.000183 1.7095 –jO.000183

8 2.0307 –jO.000220 2.0258 – jO.000219 2.0257 –jO.000219

9 2,3464 – jO.000255 2.3415 –jO.000254 2.3413 –jO.000254
10 2.6617 –JO.000289 2.6570 –JO.000289 2.6568 –jO.000289
11 2.9768 – jO.000323 2.9722 – jO.000323 2.9720 – j0,000323

12 3.2914 – jO.000357 3.2871 –jO.000356 2.2869 – jO.000356

13 3.6057 – jO.000390 3.6016 – JO.000390 3.6015 –jO.000390

~ =1,016 cm; h =1.524 cm; t, = 2.08 – jO.000416.

nonpropagating modes. The third term describes the en-

ergy storage of the nonpropagating TE modes in the air

region.

The admittance terms identified in this way give rise to

the simple transverse equivalent’ circuit shown in Fig. 4.

VII. GUIDE Loss CALCULATIONS

Even in the absence of conduction losses, the solution of

the dispersion equation (26) in the complex B plane will

give rise to a complex value of ~:

tion is given by

1 energy dissipated by conducting surfaces
~c=— Np/cm.

2 energy transmitted along guide

(32)

This loss, if sufficiently small, will not substantially change

the fields in the guide. With this assumption, the loss

components can be calculated using the loss-free fields.

The field in the guide will induce currents in the conduct-

ing walls:

J,= n x H, n = inward directed normal at the guide wall.
~=fir- j~r{. (31)

The complex part of 13 is due to the losses incurred by These currents

radiation away from the guide, and by dissipation in the resistance of a

dielectric.
In a dielectric slab waveguide, radiation loss occurs

when ~ is less than ko, the cutoff point for a dielectric

(33)

will be dissipated as 12R losses. The surface

conductor can be expressed as

(34)

guide. Physically, this can be seen as the diffraction of the

guided wave by the air/dielectric interface, giving rise to a

leaky wave in the air region. Above B = k. the guided

wave is fully bound in the guide (using the” bouncing ray”

analogy, the angle of incidence on the dielectric/air

boundary is greater than the critical angle), and so no

radiation can occur. In the IDG, the fields peak at the

metal corners, as depicted in Fig. 7. In the presence of the

slightest irregularity, the propagating mode begins to

radiate near cutoff, merging smoothly with a leaky wave

below cutoff (see Fig. 11). This effect is not important in

the operative range of the guide, and although implicit

from the above model, will be omitted in the following

calculations.

The dielectric losses can be accounted for by using a

complex value for the relative permittivity c,. The dielec-

tric losses are found to “be of the same order as the loss

tangent. Table I gives the computed values of ~ for

different orders of expansion of (26). The values were

computed for a dielectric filling of PTFE which was as-

sumed to have a loss tangent of 2 X 10-4.

and so the time-averaged power loss per unit length of

guide is given as

Pc=>/ ‘ J$.J,*dl=~j (nx H). (nx H*)dl.
guide guide
walls wdIs

Due to the guide symmetry, the integrals need only be

evaluated over one half of the guide cross section. The

currents induced in the ground plane can be neglected, and

so

PC= ~~’2(H2H: + HXH:) dx

R
+J J(0 H= Hz* + HYH; ) dy

2 -h
(W/cm). (35)

The power flow along the guide can be evaluated as the

time-averaged Poynting vector over the guide cross sec-

tion:

P=; jj Re(E X H’). azdS(W)
cross

Calculation of the Conduction Losses .
1

The conduction loss can be found by the classical per- J.1
Re(EXH~ – H~EY) dS.

T
(36)

turbation approach [5, p. 187]. The corresponding attenua-
cross
section
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Thus

Pc
Np/cm.

ac=fi
(37)

Having solved for ~, the basis amplitudes X and Z can

be found from (21). From these, the mode amplitudes of

the field components given in (6) can be found as

EX~ = P~T.X (38a)

(38c)

[1
nr2

a
crk;– —

1[ ]

a— P,:. z (38d)
T. n2

1 cot k.h
Hz,, = — —

[ 1–jk~OP.T” X + ~~P.’” Z .
tip. k.

(38e)

(38f)

Similar results can be found for the components in the air

region. By substituting these expressions into (6) and

evaluating the integrals (35) and (36), the conduction loss

can easily be evaluated. For most purposes, it is sufficient

to consider the fundamental approximation only so that

XO is the only finite amplitude term. The expressions (38)

are then considerably reduced.

The overall guide loss will be given as

a=lxc+fl”. (39)

VIII. COMPUTED AND MEASURED RESULTS

For ease of manufacture and availability of equipment,

the experimental prototypes were made from slots 1.016

cm wide, for transition into X-band rectangular wave-

guide. All measurements were carried out on an HP 8510

analyzer. The substitution measurements were carried out

over the X-band (8–12.4 GHz). The dispersion and Q

measurements were obtained from iris-coupled resonant

lengths of IDG. The irises, being symmetrically placed in

the launching guide, did not excite the higher TE20 rectan-

gular waveguide mode and so the measurement range was

determined by the cutoff of the higher order mode of the
IDG. It is noted that the operation band of the IDG is

somewhat broader than X-band. The guide dimensions

were somewhat arbitrary, although to facilitate the transi-

tion to rectangular waveguide the slot width was kept the

same as the narrow waveguide dimension. The s!ot depth

again is variable, although for efficient coupling to rectan-

gular waveguide it should be at least one half of the broad

waveguide dimension. For the measurements two slot sizes

~fi

D,electrlc
~ FIlllng

‘,

.:-

metal

Q Rectangular Wa.ezude

Fig. 5. The transition between rectangular wavegtude and IDG

SWR

1.8

Tape. length = SOmm

1.7 -

1.6 .

1.5 -

1.4 -

WITHOUT TAPER

1.3 -

1.2 -

1.1

1.0 - WITH TAPER

1

9 10 11 12
Frequency GHz

Fig. 6. The measured reflection from a rectangular waveguide to IDG

transition with and without a dielectric taper.

were available, with h/a = 1.0 and h/a = 1.5. The dielec-

tric inserts were machined from PTFE which had an

assumed dielectric constant of 2.08. The transition from

rectangular waveguide to IDG was carried out by a dielec-

tric taper, as shown in Fig. 5. The measured SWR of this

transition with and without the taper is shown in Fig. 6.

The length of the taper in this case was 50 mm and it can

be seen that with a taper the SWR of the transition is

better than 1:1.12 across the band. It is noted that the

length was not optimized; rather, it was arbitrarily chosen

so as to be longer than one guided wavelength over the

band.

The hybrid modes of IDG are designated HE~~ or

EHm~ according to the relative dominance of the TE- or

TM-to-y components, respectively. The subscripts n, m

refer to the number of half-wave variations across the slot

and down the slot. The field magnitude plots of the

fundamental HEOI mode taken across a transverse section

are given in Fig. 7. These were obtained by solving the

dispersion equation for ~ and then using (21) to find the

basis amplitude coefficients. These could then be used to

calculate the field coefficients in (38), which then gave the

fields in (6). The field plots show that the fundamental

mode is essentially TE with respect to y with the compo-

nents EX, Hy, Hz. In the slot these terms dominate, the TM
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Fig. 7. The field components of the fundamental HEOI mode plotted as
the magnitude values over the transverse guide section.
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Fig. 8. A comparison of computed and. measured dispersion curves for
various samples of IDCJ at X-band.
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Fig. 9. Computed dispersion curves for the even modes of an X-band

sample of IDG up to 40 GHz.

components are only excited in order to satisfy the

boundary conditions imposed by the 90° edge. Also evi-

dent from the plots is the singularity due to the edge. The

z-directed components, as expected, are not affected by the

edge and show no singular behavior.

The dispersion characteristics of several IDG geometries

were measured by using a resonant line technique. The

comparison between the measured and computed results is

shown in Fig. 8. The computed results were calculated

from a second-order expansion, and are within 1 percent

of the measured values. It is noted that the dielectric

constant of PTFE was taken to be 2.08, but the un-

certainty as to its actual value is + 2 percent, yielding a

+ l-percent uncertainty in the computed results.

Each term in the basis set models a particular field

variation across the slot. For example the n = 2 term

models the modes for which kX = (2 r\a ). Therefore, when

the values of ~ for the HE~. modes are sought, the

expansion must contain at least m/2 terms (considering

even modes only). In Fig. 9 the dispersion curves for the

even modes above cutoff of the X-band IDG are plotted,

using the second-order expansions.

The computed loss of a sample of IDG with dimensions

1.016 cm by 1.524 cm and made from copper is given in

Table H for two different dielectric fillings. It can be seen

that the dielectric loss is of the order of the loss tangent of

the dielectric used. Obviously Perspex, with its particularly

high loss tangent, would nol be used for a practical IDG.

The table shows that the large conductor area surrounding

the dielectric does not substantially add to the guide loss,

while the greater confinement of the field into the dielec-

tric, causing more dielectric loss, does.

The loss of a 20-cm section of IDG made of brass and

with PTFE filling was measured using a substitution tech-

nique. The comparison with computed values is shown in

Fig. 10. The resistivity of the brass was taken to be

6.2 x 10’8 ~” m and no factor was introduced to take into
account any surface roughness. The Q factor of a resonant

section of IDG was measured and the results are compared

in Fig. 11 with those obtained from the approximate



832 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 9. SEPTEMBER1987
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0.5

1.0

1.5

2.0

2.5

3.0

Fig. 10.

TABLE H

COMPUTED VALUES OF Loss FOR A SECTION OF IDG MADE OF COPPER
WITH DIMENSIONS 1.016 CM x 1.524 CM

Dielectric Filhng of PTFE (c, = 2.08 – jO.000416)
Frequency Conductor Loss Dielectric and Total Loss Q factor

Radiation Loss

(GHz) (Np/cm) (Np/cm) dB/wave dB/m

8 – 0.000103 – 0.000220 – 0.00870 – 0281 3084.5
9 – 0.000110 – 0.000255 – 0.00850 –0.317 2992,3

10 –0.000117 – 0.000289 –0.00833 – 0.353 2929.4

11 – 0.000123 –0.000323 –0.00818 –0.387 2886.8

12 –0.000128 – 0.000357 – 0.00804 – 0.421 28586

Dielectric Filling of PERSPEX ( (, = 2.50 – jO.02075)

Frequency Conductor Loss Dielectric and Total Loss Q factor

Radiation Loss

(GHz) (Np/cm) (Np/cm) dB/wave dB/m

8 –0.000117 – 0.0107 –0.2618 – 9.37 91.5

9 – 0.000124 – 0.0122 – 02591 – 10.72 87.7

10 – 0.000131 – 0.0137 –0.2567 – 12.04 85.0

11 –0.000136 –0.0152 – 0.2545 –13.34 83.0

12 –0.000141 –0.0167 – 0.2524 – 14.62 81.6

I
g!nde material : brass

dielectric : PTFE

a = 1.016cm h = 1.524cm

I , ,
9 10 11 12

Frequency GHz

A comparison of the measured and computed values of loss for

a 20-cm section of IDG.

formula derived in Appendix II. It can be seen from both

figures that there is a discrepancy between the computed

and measured results at the lower frequencies. This is due

to the fact that radiation loss mainly due to edge diffrac-

tion has not been taken into account. This loss will be

more pronounced at lower frequencies. The analysis has

shown a good correlation with the measured results. How-

ever it is noted that the samples measured approached the

ideal structure in that the dielectric was machined to

closely fit the slot. Practical structures for high mm wave

use will be constructed from casting resins or screen print-

ing [11] and so will depart more from the ideal structure.

Investigation into the increased loss due to air voids at

the metal/dielectric boundaries and dielectric inhomo-

geneities are not considered here but merit further atten-

tion.

IX. CONCLUSIONS

This work describes a highly accurate method for the

analysis of IDG with a minimum of computational effort.

The method can be easily adapted to such structures as

ridged waveguide and finline with thick conductors.

Q
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0
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h=.
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dielectric : PTFE

I
I 1 T 1 , 1 I 1 , I
7 89 10 11 12 13 14 15 16

frequency GHz

Fig. 11. A comparison between the measured and computed Q vafues

of a resonant section of IDG.

The propagation constants of the first few modes and

the loss of IDG have been calculated, showing good agree-

ment with measured results. It has been shown that, in the

practical operating range, the loss is dominated by the

dielectric loss.

APPENDIX I

THE DETERMINATION OF THE COEFFICIENTS P~~ AND

Pm(p)

The coefficients P~~ and P~( p ) have been defined as

Pnm= (mx)fm(~)%n(~)) (Al)

PM(P) = (wx)fm(x)@h(L P)) (A2)

where

(A3)
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and the weighting function, defined to model the edge However, the group velocity is

singularity, is
(Pf) A, c

w’(x) = (1 – (2x/a )2)-1’3. (A4)
(w) = Ag &r “

From tables [10] the integral is found:
—

&f2)
(-l)”nr(2n +2u)~u+,H(b)

“-112 C;. (t)cosbtdt =
(21z)!r(u)(2b)”

[Reu>-1/2, b> O]. (A5)

With the substitutions u =1/6, t = 2x/a, b = n~/2, and

m = 2n, we can write

where

r 11

[1a7r2-413~ m + ~

‘;=~’[m+mar” ‘A’) “]
[2]

These expressions are valid only for n >0. Taking the

limit of (A6) as n + O gives [3]

Pmo=o. (A9) ,,]

Similar expressions hold for Pm(p), with the substitution

[8]
Equation (A6) is in fact valid for real n = ~.

APPENDIX II [9]

APPROXIMATE EVALUATION OF THE Q FACTOR [10]

Assuming monomode operation only, the Q factor can ,11]

be defined as

cd(w)
‘= (Pal)

where (W) is the time-averaged total energy stored in the

(All)
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1 6.)(W)
Q=——

2a (Pf) “

(A13)
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